The role of natural transposable element insertions in stress response

Josefa González Institute of Evolutionary Biology (CSIC-UPF)

UNDERSTANDING ADAPTATION

Adaptation underlies the ability of species to survive in changing environments, host-pathogen interactions, resistance to pesticides and drugs

UNDERSTANDING ADAPTATION

TEs represent a sizable proportion of all genomes

GCCGCACTC CAA AGC CAA CAA CAA CAACC Evolutionary and Functional Genomics

TEs are diverse

Class I: retrotransposons

Class II: DNA transposons

TEs are a potent source of regulatory mutations

Alternative transcription start sites

Epigenetic marks

Addition of TFBSs

Batut et al 2013 Genome Res Merenciano et al 2016 PLoS Gen Lee and Karpen 2017 eLIFE Guio et al 2018 Sci Reports Sundaram et al 2014 Genome Res Chuong et al 2016 Science

Ignored because difficult to annotate

• Most current genomes

Why Drosophila melanogaster?

GCCGCACTC AGC GONZÁLEZ•LAD GAAACC Evolutionary and Functional Genomics

Le and Stephan 2006, Thornton and Andolfatto 2006, Arguello et al 2019

Why Drosophila melanogaster?

Recent adaptations must be common in this species

- new pathogens
- new diet
- range of temperatures
- toxic environments

Le and Stephan 2006, Thornton and Andolfatto 2006, Arguello et al 2019

Strong selection against TE insertions due to ectopic recombination (Petrov et al 2011 Mol Biol Evol)

Adaptive effect overcomes the initial disadvantage? Strong selection against TE insertions due to ectopic recombination (Petrov et al 2011 Mol Biol Evol)

Identify candidate adaptive mutations

91 samples from 60 natural populations

61 labs: 24 European countries + Morocco, Israel, US, Colombia, Ecuador, Australia

Pooled-seq data: 2014: 32 populations 2015: 39 populations 2016: 38 populations

Kapun et al 2018, bioRxiv

Thomas Flatt Uni Fribourg

Martin Kapun Uni Zurich

J. González IBE (CSIC-UPF)

T-lex3: accurate assessment of TE population frequencies

Maria Bogaerts PhD student

Individual and pooled NGS datasets Detects TE presence and absence Identifies miss-annotated TEs Drosophila and humans reference insertions

New mapper: BWA-MEM New filtering steps: increased accuracy Available in Github: improved manual, test datasets

https://github.com/GonzalezLab/T-lex3

Bogaerts-Márquez et al (submitted)

Stress, behaviour and development are shaped by TEs

Postdoc

Anna Ullastres PhD

Allele-specific expression analyses

Ullastres et al 2019 bioRxiv

FBti0019386 allele expression is background dependent

Bin1 total Bin1 transcript FBti0019386

Ullastres et al 2019 bioRxiv

Vivien Horváth PhD

qRT-PCR Gfp

FBti0019386 is associated with increased infection tolerance

Miriam Merenciano PhD

Ullastres et al 2019 bioRxiv

TEs are an important source of adaptive mutations

TEs are an important source of adaptive mutations

AGC **ONZÁLEZ-LAD** GAAACC Evolutionary and Functional Genomics

What is the impact of TEs in the regulation of stressresponse genes?

Stress-response pathways are highly conserved across organisms

Cnc/Nrf2 Oxidative stress Cnc/Nrf2 Xenobiotic stress HIF1 Hypoxia stress Heavy-metal stress MTF1 Heat shock stress HSF caudal, Deaf1, nub, XBP1, dorsal Immune stress

Villanueva-Cañas. Horvath et al 2019 Nuc Acids Res

Adaptation in humans is also related to several stress-responses

Fan et al 2016 Science

Villanueva-Cañas, Horvath et al 2019 Nuc Acids Res

TEs are a considerable source of stress-response TFBS

• Proportion of TFBS in TEs is TF-specific

17% to 37% in Drosophila 6% to 86% in humans

TEs containing TFBS are not globally enriched for enhancer features

AGC CAA CAC Evolutionary and Functional Genomics

TEs with ≥ 3 TFBS are present at high population frequencies

Functional validation of candidate TEs

A. CG10943 transcript

B. Enhancer assay design

$\begin{array}{c} 0.1 \\ 0.1 \\ 0.0 \\$

C. qRT-PCR *lacZ* transgenic flies gut

Functional validation of candidate TEs

We validated six out of 12 TEs tested

- All six TEs affected expression of the reporter gene under stress conditions, suggesting that these TEs are indeed involved in stress gene regulation
- Five of the six TEs add TFBS that were already present in the promoter region of the nearby gene
- All six TEs were either LTR or LINE from different families: *roo*, *jockey*, *invader4*, *Rt1b*, *BS*, and *transpac* while most of the non-validated TEs were TIRs
- Non-validated TEs:

Some might required genomic context that is not present in the vector May serve as a landing pad for TFs to scan DNA Buffer of extra binding sites to trap TF

Villanueva-Cañas, Horvath et al 2019 Nuc Acids Res

All adaptive mutations

Identified mutations

13 new Dmel reference genomes

13 new *Dmel* reference genomes

Technology	Genome	Coverage	Genome size	N50	BUSCO
PacBio	MUN	117X	142,0	7.8Mb	98.5%
	ТОМ	86X	150,4	3.2Mb	98.1%
ONT	FIN	107X	142,7	18.9Mb	98.6%
	LUN	96X	138,1	2.0Mb	98.4%
	B22	90X	142,4	3.0Mb	97.3%
	COR	82X	138,1	7.8Mb	98.0%
	JUT	81X	138,4	4.0Mb	98.4%
	SLA	68X	143,7	0.8Mb	97.3%
	GIM	65X	142,3	6.8Mb	98.6%
	R177	61X	141,9	14.5Mb	97.4%
	TEN	60X	140,5	1.1Mb	97.4%
	KIE	51X	143,8	3.8Mb	98.4%
	R375	47X	141,2	13.5Mb	96.1%

De novo annotation of TEs with REPET

GCCGCACTC CAA AGC CAA CAA CAA CAA CAAACC Evolutionary and Functional Genomics

TE annotation in the new 13 reference genomes

Genomes differ in family abundance and total copy number

GCCGCACTC CAA AGC CAA GAAACC Evolutionary and Functional Genomics

SUMMARY

• 300 polymorphic TEs likely to be enriched for adaptive insertions

- Several case studies show the diversity of molecular mechanisms
- TEs adds stress-related TFBS (Nucleic Acids Res, 2019)
- Stress, development and behavior
- TEs affect immuneresponse genes (bioRxiv)

Barret and Hoekstra 2008; Storz and Wheat 2010

Acknowledgments

Sara

Postdoc

Gabriel Rech Postdoc

Judit Salces Guirao-Rico Postdoc Llew Green Postdoc

Carlos Vargas Postdoc

Laura Aquilera Lab tech Miriam Merenciano PhD student

Maria Bogaerts PhD student Vivien Horvath PhD student

Hadi Quesneville **URGI, INRA, Versailles FRANCE**

Roberto Torres Fruitfly, adaptive science outreach

. Leseb

European Research Council Established by the European Commissio

CSIC

Generalitat de Catalunya Departament d'Empresa i Coneixement ecretaria d'Universitats i Recerca

RESEARCH NETWORKS

www.gonzalezlab.eu